Characterization of metal(loid)s and antibiotic resistance in bacteria of human gut microbiota from chronic kidney disease subjects

María V. Miranda, Fernanda C. González, Osvaldo S. Paredes-Godoy, Mario A. Maulén, Claudio C. Vásquez†, Waldo A. Díaz-Vásquez*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)


Background: Human Gut Microbiota (HGM) is composed of more than one thousand species, playing an important role in the health status of individuals. Dysbiosis (an HGM imbalance) is augmented as chronic kidney disease (CKD) progresses, as loss of kidney function accelerates. Increased antibiotic use in CKD subjects and consumption of nephrotoxic heavy metals and metalloids such as lead, cadmium, arsenic, and mercury in tap water increases the dysbiosis state. Studies in people with stage 3 CKD are complex to carry out, mainly because patients are self-reliant who rarely consult a specialist. The current work focused on this type of patient. Results: Lead and arsenic-resistant bacteria were obtained from self-reliant (that stands on its own) stage 3 CKD subjects. Pathogen-related Firmicutes and Proteobacteria genus bacteria were observed. Resistance and potentiation of antibiotic effects in the presence of metal(loid)s in vitro were found. Furthermore, the presence of the following genes markers for antibiotic and metal(loid) resistance were identified by qPCR: oxa10, qnrB1, mphB, ermB, mefE1, arr2, sulll, tetA, floR, strB, dhfr1, acrB, cadA2k, cadA3k, arsC, pbrA. We observed a decrease in the number of metal resistance markers. Conclusions: The presence of cadA and arsC genetic markers of antibiotics and metal(loid)s resistance were detected in samples from stage 3 CKD subjects. Lower gene amplification in advanced stages of CKD were also observed, possibly associated with a decrease in resident HGM during kidney disease progression.

Idioma originalInglés
Número de artículo23
PublicaciónBiological Research
EstadoPublicada - 2022

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s).

Áreas temáticas de ASJC Scopus

  • Bioquímica, Genética y Biología Molecular General
  • Ciencias Agrícolas y Biológicas General


Profundice en los temas de investigación de 'Characterization of metal(loid)s and antibiotic resistance in bacteria of human gut microbiota from chronic kidney disease subjects'. En conjunto forman una huella única.

Citar esto