Characterization of metal(loid)s and antibiotic resistance in bacteria of human gut microbiota from chronic kidney disease subjects

María V. Miranda, Fernanda C. González, Osvaldo S. Paredes-Godoy, Mario A. Maulén, Claudio C. Vásquez†, Waldo A. Díaz-Vásquez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Background: Human Gut Microbiota (HGM) is composed of more than one thousand species, playing an important role in the health status of individuals. Dysbiosis (an HGM imbalance) is augmented as chronic kidney disease (CKD) progresses, as loss of kidney function accelerates. Increased antibiotic use in CKD subjects and consumption of nephrotoxic heavy metals and metalloids such as lead, cadmium, arsenic, and mercury in tap water increases the dysbiosis state. Studies in people with stage 3 CKD are complex to carry out, mainly because patients are self-reliant who rarely consult a specialist. The current work focused on this type of patient. Results: Lead and arsenic-resistant bacteria were obtained from self-reliant (that stands on its own) stage 3 CKD subjects. Pathogen-related Firmicutes and Proteobacteria genus bacteria were observed. Resistance and potentiation of antibiotic effects in the presence of metal(loid)s in vitro were found. Furthermore, the presence of the following genes markers for antibiotic and metal(loid) resistance were identified by qPCR: oxa10, qnrB1, mphB, ermB, mefE1, arr2, sulll, tetA, floR, strB, dhfr1, acrB, cadA2k, cadA3k, arsC, pbrA. We observed a decrease in the number of metal resistance markers. Conclusions: The presence of cadA and arsC genetic markers of antibiotics and metal(loid)s resistance were detected in samples from stage 3 CKD subjects. Lower gene amplification in advanced stages of CKD were also observed, possibly associated with a decrease in resident HGM during kidney disease progression.

Original languageEnglish
Article number23
JournalBiological Research
Volume55
Issue number1
DOIs
StatePublished - 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Characterization of metal(loid)s and antibiotic resistance in bacteria of human gut microbiota from chronic kidney disease subjects'. Together they form a unique fingerprint.

Cite this