Pearcey integrals, Stokes lines and exact baryonic layers in the low energy limit of QCD

Sergio L. Cacciatori*, Fabrizio Canfora, Federica Muscolino

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva


The first analytic solutions representing baryonic layers living at finite baryon density within a constant magnetic field in the gauged Skyrme model are constructed. A remarkable feature of these configurations is that, if the Skyrme term is neglected, then these baryonic layers in the constant magnetic background cannot be found analytically and their energies grow very fast with the magnetic field. On the other hand, if the Skyrme term is taken into account, the field equations can be solved analytically and the corresponding solutions have a smooth limit for large magnetic fields. Thus, the Skyrme term discloses the universal character of these configurations living at finite Baryon density in a constant magnetic field. The classical gran-canonical partition function of these configurations can be expressed explicitly in terms of the Pearcey integral. This fact allows us to determine analytically the Stokes lines of the partition function and the corresponding dependence on the baryonic chemical potential as well as on the external magnetic field. In this way, we can determine various critical curves in the (μB−Bext) plane which separates different physical behaviors. These families of inhomogeneous baryonic condensates can be also dressed with chiral conformal excitations of the solutions representing modulations of the layers themselves. Some physical consequences are analyzed.

Idioma originalInglés
Número de artículo116477
PublicaciónNuclear Physics B
EstadoPublicada - 2024

Nota bibliográfica

Publisher Copyright:
© 2024 The Author(s)

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía


Profundice en los temas de investigación de 'Pearcey integrals, Stokes lines and exact baryonic layers in the low energy limit of QCD'. En conjunto forman una huella única.

Citar esto