Multi-objective Search via Lazy and Efficient Dominance Checks

Carlos Hernández, William Yeoh, Jorge A. Baier, Ariel Felner, Oren Salzman, Han Zhang, Shao Hung Chan, Sven Koenig

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Multi-objective search can be used to model many real-world problems that require finding Pareto-optimal paths from a specified start state to a specified goal state, while considering different cost metrics such as distance, time, and fuel. The performance of multi-objective search can be improved by making dominance checking-an operation necessary to determine whether or not a path dominates another-more efficient. This was shown in practice by BOA*, a state-of-the-art bi-objective search algorithm, which outperforms previously existing bi-objective search algorithms in part because it adopts a lazy approach towards dominance checking. EMOA*, a recent multi-objective search algorithm, generalizes BOA* to more-than-two objectives using AVL trees for dominance checking. In this paper, we first propose Linear-Time Multi-Objective A* (LTMOA*), a multi-objective search algorithm that implements more efficient dominance checking than EMOA* using simple data structures like arrays. We then propose LazyLTMOA*, which employs a lazier approach by removing dominance checking during node generation. Our experimental results show that LazyLTMOA* outperforms EMOA* by up to an order of magnitude in terms of runtime.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
EditoresEdith Elkind
EditorialInternational Joint Conferences on Artificial Intelligence
Páginas7223-7230
Número de páginas8
ISBN (versión digital)9781956792034
ISBN (versión impresa)9781956792034
DOI
EstadoPublicada - 2023
Evento32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China
Duración: 20232023

Serie de la publicación

NombreIJCAI International Joint Conference on Artificial Intelligence
Volumen2023-August
ISSN (versión impresa)1045-0823

Conferencia

Conferencia32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
País/TerritorioChina
CiudadMacao
Período19/08/2325/08/23

Nota bibliográfica

Publisher Copyright:
© 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial

Huella

Profundice en los temas de investigación de 'Multi-objective Search via Lazy and Efficient Dominance Checks'. En conjunto forman una huella única.

Citar esto