Artificial neural network-based prediction model of elastic floor response spectra incorporating dynamic primary-secondary structure interaction

Madhavi Latha Annamdasu, S. P. Challagulla*, Denise Penelope N. Kontoni*, J. Rex, Mohammed Jameel, Felipe Vicencio

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

The evaluation of the Floor Response Spectrum (FRS) holds paramount significance in assessing the seismic behavior of secondary structures. Precise FRS prediction empowers engineers to make informed decisions concerning structural design, retrofitting, and safety precautions. This study aims to scrutinize the impact of dynamic interaction between primary and secondary structures on FRS. Both the elastic primary structure (PS) and elastic secondary structure (SS) employ a single-degree-of-freedom (SDOF) system. Governing motion equations for both coupled (with dynamic interaction) and uncoupled (without dynamic interaction) systems are formulated and solved numerically. The study investigates how variations in the vibration period of PS (Tp), tuning ratio (Tr), mass ratio (μ), and damping ratio (ξs) of SS influence FRS. The FRS impact remains minimal at μ = 0.001 (0.1%); however, with increasing mass ratio, PS-SS dynamic interaction significantly affects SS's spectral acceleration response. Coupled analysis is crucial only for secondary structures tuned to the primary structure's vibration period (0.8≤Tr≤1.2). This study utilizes two-layer feed-forward Artificial Neural Networks (ANNs) for FRS prediction. The Levenberg-Marquardt (LM) backpropagation (BP) algorithm trains the network using a comprehensive dataset. In summary, it is evident that the ANNs, once trained, enable accurate prediction of the FRS, exhibiting a R2 of 99%. Additionally, a design expression is formulated utilizing the ANN model and subsequently compared with the existing formulation.

Idioma originalInglés
Número de artículo108427
PublicaciónSoil Dynamics and Earthquake Engineering
Volumen177
DOI
EstadoPublicada - 2024

Nota bibliográfica

Publisher Copyright:
© 2023 Elsevier Ltd

Áreas temáticas de ASJC Scopus

  • Ingeniería civil y de estructuras
  • Ingeniería geotécnica y geológica
  • Edafología

Huella

Profundice en los temas de investigación de 'Artificial neural network-based prediction model of elastic floor response spectra incorporating dynamic primary-secondary structure interaction'. En conjunto forman una huella única.

Citar esto