A Hand-Drawn Language for Human-Robot Collaboration in Wood Stereotomy

Cristhian A. Aguilera-Carrasco*, Luis Felipe Gonzalez-Bohme, Francisco Valdes, Francisco Javier Quitral-Zapata, Bogdan Raducanu

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters' line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language's efficacy, with the successful identification of a specific set of symbols on various wood species' sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.

Idioma originalInglés
Páginas (desde-hasta)100975-100985
Número de páginas11
PublicaciónIEEE Access
Volumen11
DOI
EstadoPublicada - 2023

Nota bibliográfica

Publisher Copyright:
© 2013 IEEE.

Áreas temáticas de ASJC Scopus

  • Ciencia de la Computación General
  • Ciencia de los Materiales General
  • Ingeniería General

Huella

Profundice en los temas de investigación de 'A Hand-Drawn Language for Human-Robot Collaboration in Wood Stereotomy'. En conjunto forman una huella única.

Citar esto