Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases

Angelo Oñate*, Juan Pablo Sanhueza, Diabb Zegpi, Víctor Tuninetti, Jesús Ramirez, Carlos Medina, Manuel Melendrez, David Rojas*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%.

Idioma originalInglés
Número de artículo171224
PublicaciónJournal of Alloys and Compounds
Volumen962
DOI
EstadoPublicada - 2023
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2023 Elsevier B.V.

Áreas temáticas de ASJC Scopus

  • Mecánica de materiales
  • Ingeniería mecánica
  • Metales y aleaciones
  • Química de los materiales

Huella

Profundice en los temas de investigación de 'Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases'. En conjunto forman una huella única.

Citar esto