Superconformal Bondi-Metzner-Sachs Algebra in Three Dimensions

Oscar Fuentealba, Hernán A. González, Alfredo Pérez, David Tempo, Ricardo Troncoso

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

13 Citas (Scopus)

Resumen

The conformal extension of the BMS3 algebra is constructed. Apart from an infinite number of "superdilatations,"in order to incorporate superspecial conformal transformations, the commutator of the latter with supertranslations strictly requires the presence of nonlinear terms in the remaining generators. The algebra appears to be very rigid, in the sense that its central extensions as well as the coefficients of the nonlinear terms become determined by the central charge of the Virasoro subalgebra. The wedge algebra corresponds to the conformal group in three spacetime dimensions SO(3,2), so that the full algebra can also be interpreted as an infinite-dimensional nonlinear extension of the AdS4 algebra with nontrivial central charges. Moreover, since the Lorentz subalgebra [sl(2,R)] is nonprincipally embedded within the conformal (wedge) algebra, according to the conformal weight of the generators, the conformal extension of BMS3 can be further regarded as a W(2,2,2,1) algebra. An explicit canonical realization of the conformal extension of BMS3 is then shown to emerge from the asymptotic structure of conformal gravity in three dimensions, endowed with a new set of boundary conditions. The supersymmetric extension is also briefly addressed.

Idioma originalInglés
Número de artículo091602
PublicaciónPhysical Review Letters
Volumen126
N.º9
DOI
EstadoPublicada - 2021
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2021 authors.

Áreas temáticas de ASJC Scopus

  • Física y Astronomía General

Huella

Profundice en los temas de investigación de 'Superconformal Bondi-Metzner-Sachs Algebra in Three Dimensions'. En conjunto forman una huella única.

Citar esto