TY - JOUR
T1 - Role of proteases in dysfunctional placental vascular remodelling in preeclampsia
AU - Gutiérrez, Jaime A.
AU - Gómez, Isabel
AU - Chiarello, Delia I.
AU - Salsoso, Rocío
AU - Klein, Andrés D.
AU - Guzmán-Gutiérrez, Enrique
AU - Toledo, Fernando
AU - Sobrevia, Luis
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Preeclampsia is a syndrome characterised by vascular dysfunction, impaired angiogenesis, and hypertension during pregnancy. Even when the precise pathophysiology of preeclampsia remains elusive, impaired vascular remodelling and placental angiogenesis in the placental villi and defective trophoblast invasion of the uterus are proposed as crucial mechanisms in this syndrome. Reduced trophoblast invasion leads to reduced uteroplacental blood flow and oxygen availability and increased oxidative stress. These phenomena trigger the release of soluble factors into the maternal and foetoplacental circulation that are responsible of the clinical features of preeclampsia. New blood vessels generation as well as vascular remodelling are mechanisms that require expression and activity of different proteases, including matrix metalloproteases, a-disintegrin and metalloproteases, and a-disintegrin and metalloprotease with thrombospondin motifs. These proteases exert proteolysis of the extracellular matrix. Additionally, cathepsins, a family of proteolytic enzymes, are primarily located in lysosomes but are also released by cells to the extracellular space. This review focuses on the role that these proteases play in the regulation of the uterine trophoblast invasion and the placental vascular remodelling associated with preeclampsia.
AB - Preeclampsia is a syndrome characterised by vascular dysfunction, impaired angiogenesis, and hypertension during pregnancy. Even when the precise pathophysiology of preeclampsia remains elusive, impaired vascular remodelling and placental angiogenesis in the placental villi and defective trophoblast invasion of the uterus are proposed as crucial mechanisms in this syndrome. Reduced trophoblast invasion leads to reduced uteroplacental blood flow and oxygen availability and increased oxidative stress. These phenomena trigger the release of soluble factors into the maternal and foetoplacental circulation that are responsible of the clinical features of preeclampsia. New blood vessels generation as well as vascular remodelling are mechanisms that require expression and activity of different proteases, including matrix metalloproteases, a-disintegrin and metalloproteases, and a-disintegrin and metalloprotease with thrombospondin motifs. These proteases exert proteolysis of the extracellular matrix. Additionally, cathepsins, a family of proteolytic enzymes, are primarily located in lysosomes but are also released by cells to the extracellular space. This review focuses on the role that these proteases play in the regulation of the uterine trophoblast invasion and the placental vascular remodelling associated with preeclampsia.
KW - Angiogenesis
KW - Placenta
KW - Preeclampsia
KW - Proteases
KW - Vascular remodelling
UR - http://www.scopus.com/inward/record.url?scp=85064317790&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2019.04.004
DO - 10.1016/j.bbadis.2019.04.004
M3 - Review article
C2 - 30954558
AN - SCOPUS:85064317790
SN - 0925-4439
VL - 1866
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 2
M1 - 165448
ER -