Resumen
This paper describes a color restoration technique used to remove NIR information from single sensor cameras where color and near-infrared images are simultaneously acquired—referred to in the literature as RGBN images. The proposed approach is based on a neural network architecture that learns the NIR information contained in the RGBN images. The proposed approach is evaluated on real images obtained by using a pair of RGBN cameras. Additionally, qualitative comparisons with a naïve color correction technique based on mean square error minimization are provided.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Trends in Cyber-Physical Multi-Agent Systems. The PAAMS Collection - 15th International Conference, PAAMS 2017 |
Editores | Andrew T. Campbell, Fernando De la Prieta, Zita Vale, Luis Antunes, Maria N. Moreno, Vicente Julian, Tiago Pinto, Antonio J.R. Neves |
Editorial | Springer Verlag |
Páginas | 155-163 |
Número de páginas | 9 |
ISBN (versión impresa) | 9783319615776 |
DOI | |
Estado | Publicada - 2017 |
Publicado de forma externa | Sí |
Evento | 15th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2017 - Porto, Portugal Duración: 2017 → 2017 |
Serie de la publicación
Nombre | Advances in Intelligent Systems and Computing |
---|---|
Volumen | 619 |
ISSN (versión impresa) | 2194-5357 |
Conferencia
Conferencia | 15th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2017 |
---|---|
País/Territorio | Portugal |
Ciudad | Porto |
Período | 21/06/17 → 23/06/17 |
Nota bibliográfica
Publisher Copyright:© Springer International Publishing AG 2018.
Áreas temáticas de ASJC Scopus
- Ingeniería de control y sistemas
- Ciencia de la Computación General