TY - JOUR
T1 - Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution
T2 - A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study
AU - Guerra-Valle, María
AU - Petzold, Guillermo
AU - Orellana-Palma, Patricio
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - The objective of this study was to evaluate the optimal conditions to encapsulate cryoconcentrate solutions via ionic gelation technique. Hydrogel beads were prepared using alginate (1%, 2% and 3% (w/w)) and cornstarch (0.5%, 1% and 2% (w/w)). Later, a sucrose/acid gallic solution was concentrated through block freeze concentration (BFC) at three cycles. Thus, each solution was a mixture with the respective combination of alginate/cornstarch. The final solution was added drop-wise on a CaCl2 solution, allowing the formation of calcium alginate-cornstarch hydrogel beads filled with sucrose/acid gallic solution or cryoconcentrated solution. The results showed that alginate at 2% (w/w) and cornstarch at 2% (w/w) had the best efficiency to encapsulate any solution, with values close to 63.3%, 90.2%, 97.7%, and 75.1%, and particle sizes of approximately 3.09, 2.82, 2.73, and 2.64 mm, for initial solution, cycle 1, cycle 2, and cycle 3, respectively. Moreover, all the samples presented spherical shape. Therefore, the appropriate content of alginate and cornstarch allows for increasing the amount of model cryoconcentrated solution inside of the hydrogel beads. Furthermore, the physicochemical and morphological characteristics of hydrogel beads can be focused for future food and/or pharmaceutical applications, utilizing juice or extract concentrated by BFC as the solution encapsulated.
AB - The objective of this study was to evaluate the optimal conditions to encapsulate cryoconcentrate solutions via ionic gelation technique. Hydrogel beads were prepared using alginate (1%, 2% and 3% (w/w)) and cornstarch (0.5%, 1% and 2% (w/w)). Later, a sucrose/acid gallic solution was concentrated through block freeze concentration (BFC) at three cycles. Thus, each solution was a mixture with the respective combination of alginate/cornstarch. The final solution was added drop-wise on a CaCl2 solution, allowing the formation of calcium alginate-cornstarch hydrogel beads filled with sucrose/acid gallic solution or cryoconcentrated solution. The results showed that alginate at 2% (w/w) and cornstarch at 2% (w/w) had the best efficiency to encapsulate any solution, with values close to 63.3%, 90.2%, 97.7%, and 75.1%, and particle sizes of approximately 3.09, 2.82, 2.73, and 2.64 mm, for initial solution, cycle 1, cycle 2, and cycle 3, respectively. Moreover, all the samples presented spherical shape. Therefore, the appropriate content of alginate and cornstarch allows for increasing the amount of model cryoconcentrated solution inside of the hydrogel beads. Furthermore, the physicochemical and morphological characteristics of hydrogel beads can be focused for future food and/or pharmaceutical applications, utilizing juice or extract concentrated by BFC as the solution encapsulated.
KW - Beads
KW - Cryoconcentration
KW - Encapsulation
KW - Hydrogel
KW - Model solution
UR - http://www.scopus.com/inward/record.url?scp=85126329117&partnerID=8YFLogxK
U2 - 10.3390/polym14051031
DO - 10.3390/polym14051031
M3 - Article
AN - SCOPUS:85126329117
SN - 2073-4360
VL - 14
JO - Polymers
JF - Polymers
IS - 5
M1 - 1031
ER -