Resumen
We analyze the Rarita-Schwinger massless theory in the Lagrangian and Hamiltonian approaches. At the Lagrangian level, the standard gamma-trace gauge fixing constraint leaves a 1/2 and a 3/2 propagating Poincaré group helicities. At the Hamiltonian level, the result depends on whether the Dirac conjecture is assumed or not. In the affirmative case, a secondary first class constraint is added to the total Hamiltonian and a corresponding gauge fixing condition must be imposed, completely removing the 1/2 sector. In the opposite case, the 1/2 field propagates and the Hamilton field equations match the Euler-Lagrange equations.
Idioma original | Español (Chile) |
---|---|
Páginas | 1 |
Número de páginas | 9 |
DOI | |
Estado | Publicada - 2023 |
Evento | 34th International Colloquium on Group Theoretical Methods in Physics - Strasbourg University, Strasbourg, Francia Duración: 2022 → 2022 Número de conferencia: 34 https://indico.in2p3.fr/event/23498/ |
Conferencia
Conferencia | 34th International Colloquium on Group Theoretical Methods in Physics |
---|---|
Título abreviado | Group 34 |
País/Territorio | Francia |
Ciudad | Strasbourg |
Período | 18/07/22 → 22/07/22 |
Dirección de internet |