Resumen
We consider general torsion components in three-dimensional Einstein-Cartan gravity, providing a geometrical interpretation for matter, and find new solutions of the corresponding equations for the Riemann curvature and torsion. These geometries involve a peculiar interplay between the vector (βi) and the singlet (τ) irreducible components of the torsion which, under general conditions, feature a formal analogy with the equation for a Beltrami fluid. Interestingly, we find that the local AdS3 geometry is now deformed by effect of the "Beltrami-torsion"βi. Some of these new solutions describe deformations of the Bañados, Teitelboim, Zanelli black hole due to the presence of torsion. The latter acts as a geometric flux which, in some cases, removes the causal singularity.
Idioma original | Inglés |
---|---|
Número de artículo | 044011 |
Publicación | Physical Review D |
Volumen | 108 |
N.º | 4 |
DOI | |
Estado | Publicada - 2023 |
Nota bibliográfica
Publisher Copyright:© 2023 authors. Published by the American Physical Society.
Áreas temáticas de ASJC Scopus
- Física nuclear y de alta energía