Multiscale cortical parcellation based on geodesic distance and hierarchical clustering

Yarelis Prieto*, Joaquin Molina, Monica Otero, Jean Francois Mangin, Cecilia Hernandez, Wael El-Deredy, Pamela Guevara

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Brain neuronal networks of structural and func-tional connections have a hierarchical organization and a complex relationship between them. To study brain dynamics, it is important to identify the cortical level of parcellation of greater metastability. This paper presents a new multiscale cortical parcellation method based on the geodesic distance between vertices of the cortical surface and agglomerative hierarchical clustering, starting from an anatomical parcellation. First, the centroids of each region are efficiently calculated using the geodesic distance between the region's vertices. Then, an affinity graph is constructed between the region centroids, based on the geodesic distance, from which a dendrogram is constructed using hierarchical clustering. Finally, an adaptive tree partitioning method is employed to obtain parcellations at various granularity levels, producing a multiscale parcellation. Furthermore, we propose an optimized method for the calculation of structural connectomes for each parcellation level. This framework will be made available and can be applied to different fine-grained parcellations. Additional information, such as structural connectivity information can be easily added to the framework. In future work this multiscale cortical parcellation will allow for simulations of cerebral dynamics at different levels.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350325232
DOI
EstadoPublicada - 2023
Evento19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023 - Mexico City, México
Duración: 20232023

Serie de la publicación

NombreProceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023

Conferencia

Conferencia19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023
País/TerritorioMéxico
CiudadMexico City
Período15/11/2317/11/23

Nota bibliográfica

Publisher Copyright:
© 2023 IEEE.

Áreas temáticas de ASJC Scopus

  • Informática aplicada
  • Modelización y simulación
  • Informática aplicada a la salud
  • Radiología, medicina nuclear y obtención de imágenes

Huella

Profundice en los temas de investigación de 'Multiscale cortical parcellation based on geodesic distance and hierarchical clustering'. En conjunto forman una huella única.

Citar esto