Log corrections to entropy of three dimensional black holes with soft hair

Daniel Grumiller*, Alfredo Perez, David Tempo, Ricardo Troncoso

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

We calculate log corrections to the entropy of three-dimensional black holes with “soft hairy” boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.

Idioma originalInglés
Número de artículo107
PublicaciónJournal of High Energy Physics
Volumen2017
N.º8
DOI
EstadoPublicada - 2017
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2017, The Author(s).

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía

Huella

Profundice en los temas de investigación de 'Log corrections to entropy of three dimensional black holes with soft hair'. En conjunto forman una huella única.

Citar esto