Resumen
The simultaneous use of images from different spectra can be helpful to improve the performance of many computer vision tasks. The core idea behind the usage of crossspectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN architectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Experimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Additionally, our experiments show that some CNN architectures are capable of generalizing between different crossspectral domains.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 |
Editorial | IEEE Computer Society |
Páginas | 267-275 |
Número de páginas | 9 |
ISBN (versión digital) | 9781467388504 |
DOI | |
Estado | Publicada - 2016 |
Publicado de forma externa | Sí |
Evento | 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 - Las Vegas, Estados Unidos Duración: 2016 → 2016 |
Serie de la publicación
Nombre | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
ISSN (versión impresa) | 2160-7508 |
ISSN (versión digital) | 2160-7516 |
Conferencia
Conferencia | 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | Las Vegas |
Período | 26/06/16 → 01/07/16 |
Nota bibliográfica
Publisher Copyright:© 2016 IEEE.
Áreas temáticas de ASJC Scopus
- Visión artificial y reconocimiento de patrones
- Ingeniería eléctrica y electrónica