Learning Cross-Spectral Similarity Measures with Deep Convolutional Neural Networks

Cristhian A. Aguilera, Francisco J. Aguilera, Angel D. Sappa, Ricardo Toledo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

71 Citas (Scopus)

Resumen

The simultaneous use of images from different spectra can be helpful to improve the performance of many computer vision tasks. The core idea behind the usage of crossspectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN architectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Experimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Additionally, our experiments show that some CNN architectures are capable of generalizing between different crossspectral domains.

Idioma originalInglés
Título de la publicación alojadaProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
EditorialIEEE Computer Society
Páginas267-275
Número de páginas9
ISBN (versión digital)9781467388504
DOI
EstadoPublicada - 2016
Publicado de forma externa
Evento29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 - Las Vegas, Estados Unidos
Duración: 20162016

Serie de la publicación

NombreIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (versión impresa)2160-7508
ISSN (versión digital)2160-7516

Conferencia

Conferencia29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
País/TerritorioEstados Unidos
CiudadLas Vegas
Período26/06/1601/07/16

Nota bibliográfica

Publisher Copyright:
© 2016 IEEE.

Áreas temáticas de ASJC Scopus

  • Visión artificial y reconocimiento de patrones
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Learning Cross-Spectral Similarity Measures with Deep Convolutional Neural Networks'. En conjunto forman una huella única.

Citar esto