Improved antibiotic detection in raw milk using machine learning tools over the absorption spectra of a problem-specific nanobiosensor

Pablo Gutiérrez, Sebastián E. Godoy, Sergio Torres, Patricio Oyarzún*, Ignacio Sanhueza, Victor Díaz-García, Braulio Contreras-Trigo, Pablo Coelho

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaCartarevisión exhaustiva

19 Citas (Scopus)

Resumen

In this article we present the development of a biosensor system that integrates nanotechnology, optomechanics and a spectral detection algorithm for sensitive quantification of antibiotic residues in raw milk of cow. Firstly, nanobiosensors were designed and synthesized by chemically bonding gold nanoparticles (AuNPs) with aptamer bioreceptors highly selective for four widely used antibiotics in the field of veterinary medicine, namely, Kanamycin, Ampicillin, Oxytetracycline and Sulfadimethoxine. When molecules of the antibiotics are present in the milk sample, the interaction with the aptamers induces random AuNP aggregation. This phenomenon modifies the initial absorption spectrum of the milk sample without antibiotics, producing spectral features that indicate both the presence of antibiotics and, to some extent, its concentration. Secondly, we designed and constructed an electro-opto-mechanic device that performs automatic high-resolution spectral data acquisition in a wavelength range of 400 to 800 nm. Thirdly, the acquired spectra were processed by a machine-learning algorithm that is embedded into the acquisition hardware to determine the presence and concentration ranges of the antibiotics. Our approach outperformed state-of-the-art standardized techniques (based on the 520/620 nm ratio) for antibiotic detection, both in speed and in sensitivity.

Idioma originalInglés
Número de artículo4552
Páginas (desde-hasta)1-13
Número de páginas13
PublicaciónSensors (Switzerland)
Volumen20
N.º16
DOI
EstadoPublicada - 2020

Nota bibliográfica

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Áreas temáticas de ASJC Scopus

  • Química analítica
  • Bioquímica
  • Óptica y física atómica y molecular
  • Instrumental
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Improved antibiotic detection in raw milk using machine learning tools over the absorption spectra of a problem-specific nanobiosensor'. En conjunto forman una huella única.

Citar esto