TY - JOUR
T1 - Herpes simplex virus type 1 enhances expression of the synaptic protein arc for its own benefit
AU - Acuña-Hinrichsen, Francisca
AU - Muñoz, Mariela
AU - Hott, Melissa
AU - Martin, Carolina
AU - Mancilla, Evelyn
AU - Salazar, Paula
AU - Leyton, Luis
AU - Zambrano, Angara
AU - Concha, Margarita I.
AU - Burgos, Patricia V.
AU - Otth, Carola
N1 - Publisher Copyright:
© 2019 Acuña-Hinrichsen, Muñoz, Hott, Martin, Mancilla, Salazar, Leyton, Zambrano, Concha, Burgos and Otth.
PY - 2019/1/4
Y1 - 2019/1/4
N2 - Herpes simplex virus type 1 (HSV-1) is a neurotropic virus able to reach the central nervous system (CNS) after primary infection in oronasal mucosa. HSV-1 establishes latency inside neurons due the repression of its gene expression process, which is related to periodic reactivations in response to cellular stress conditions, constituting a risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). The immediate-early gene Arc plays an essential role in neuronal morphology, synaptic plasticity and memory formation. Arc acts as a hub protein, interacting with components of the endocytic machinery required for AMPA receptor (AMPAR) recycling as well as with proteins of the post-synaptic density and actin cytoskeleton. However, to date, no studies have evaluated whether persistent neurotropic HSV-1 infection modulates the expression or function of Arc protein in brain tissue. Here, we report that neuronal in vivo and in vitro infection of HSV-1 significantly increases Arc protein levels, showing a robust perinuclear distribution in neuronal cell lines, a process that is dependent on an active HSV-1 replication cycle. Finally, we found that silencing Arc protein caused a decrease in HSV-1 proteins and viral progeny, suggesting that Arc is involved in the lifecycle of HSV-1. Our studies strongly suggest that pathogenicity of HSV-1 neuronal reactivations in humans could be mediated in part by Arc neuronal upregulation and its potential role in endocytic trafficking and AMPA-neuronal function impairment. Further studies are necessary to define whether this phenomenon could have repercussions in cognition and learning processes in infected individuals.
AB - Herpes simplex virus type 1 (HSV-1) is a neurotropic virus able to reach the central nervous system (CNS) after primary infection in oronasal mucosa. HSV-1 establishes latency inside neurons due the repression of its gene expression process, which is related to periodic reactivations in response to cellular stress conditions, constituting a risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). The immediate-early gene Arc plays an essential role in neuronal morphology, synaptic plasticity and memory formation. Arc acts as a hub protein, interacting with components of the endocytic machinery required for AMPA receptor (AMPAR) recycling as well as with proteins of the post-synaptic density and actin cytoskeleton. However, to date, no studies have evaluated whether persistent neurotropic HSV-1 infection modulates the expression or function of Arc protein in brain tissue. Here, we report that neuronal in vivo and in vitro infection of HSV-1 significantly increases Arc protein levels, showing a robust perinuclear distribution in neuronal cell lines, a process that is dependent on an active HSV-1 replication cycle. Finally, we found that silencing Arc protein caused a decrease in HSV-1 proteins and viral progeny, suggesting that Arc is involved in the lifecycle of HSV-1. Our studies strongly suggest that pathogenicity of HSV-1 neuronal reactivations in humans could be mediated in part by Arc neuronal upregulation and its potential role in endocytic trafficking and AMPA-neuronal function impairment. Further studies are necessary to define whether this phenomenon could have repercussions in cognition and learning processes in infected individuals.
KW - Alzheimer’s disease
KW - Arc
KW - HSV-1
KW - Neurodegeneration
KW - Neuronal dysfunction
KW - Neuronal infection
KW - Neurotropic virus
UR - http://www.scopus.com/inward/record.url?scp=85061185812&partnerID=8YFLogxK
U2 - 10.3389/fncel.2018.00505
DO - 10.3389/fncel.2018.00505
M3 - Article
AN - SCOPUS:85061185812
SN - 1662-5102
VL - 12
JO - Frontiers in Cellular Neuroscience
JF - Frontiers in Cellular Neuroscience
M1 - 505
ER -