Generalized Data-Driven Model-Free Predictive Control for Electrical Drive Systems

Yao Wei, Hector Young, Fengxiang Wang*, Jose Rodriguez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

31 Citas (Scopus)

Resumen

The performance of model predictive control has a strong correlation to the precision of the physical parameters of the plant, and these parameters are hard to determine since they are continuously changing during the operation process. To fully eliminate the influence of the physical parameters and enhance robustness, a model-free predictive control is proposed in this article to suit the electrical drive systems. The plant model is designed as several discrete-time transfer functions used to decouple the input and output signals and to describe their relationships, and the coefficients of these functions are online designed based on the recursive least square algorithm. An observer is designed to obtain accurately sampled current components considering the delays. The proposed method is applied to a permanent magnet synchronous motor speed control system as the stator current controller, and the simulation and experimental results show the advantages of the improved dynamics, stator current quality, and robustness compared with the conventional model-free predictive current control strategy.

Idioma originalInglés
Páginas (desde-hasta)7642-7652
Número de páginas11
PublicaciónIEEE Transactions on Industrial Electronics
Volumen70
N.º8
DOI
EstadoPublicada - 2023

Nota bibliográfica

Publisher Copyright:
© 1982-2012 IEEE.

Áreas temáticas de ASJC Scopus

  • Ingeniería eléctrica y electrónica
  • Ingeniería de control y sistemas

Huella

Profundice en los temas de investigación de 'Generalized Data-Driven Model-Free Predictive Control for Electrical Drive Systems'. En conjunto forman una huella única.

Citar esto