Finite Control-Set Learning Predictive Control for Power Converters

Xing Liu, Lin Qiu*, Youtong Fang, Kui Wang, Yongdong Li, Jose Rodriguez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

This letter concentrates on introducing a learning methodology that extends and improves classical finite control-set model predictive control approach, which is able to significantly mitigate the inherent limitations of system uncertainties and unknown perturbations subject to robustness characteristics. To this end, in our work, a finite control-set learning predictive control architecture, which is addressed as an unsupervised learning technique, is presented. In this control task, we define a single neural network to learn the tracking control part online, and a robustifying control term is embedded into the suggested control solution so as to handle the approximator error and/or external disturbances, thereby leading to considerable enhancement of robustness. Dissimilar to classical finite control-set model predictive control, we establish that this method does not require a priori knowledge of model information and weighting factors, making our approach applicable to a variety of power converter systems. Finally, we highlight its advantages with a case study.

Idioma originalInglés
Páginas (desde-hasta)8190-8196
Número de páginas7
PublicaciónIEEE Transactions on Industrial Electronics
Volumen71
N.º7
DOI
EstadoPublicada - 2023

Nota bibliográfica

Publisher Copyright:
IEEE

Áreas temáticas de ASJC Scopus

  • Ingeniería eléctrica y electrónica
  • Ingeniería de control y sistemas

Huella

Profundice en los temas de investigación de 'Finite Control-Set Learning Predictive Control for Power Converters'. En conjunto forman una huella única.

Citar esto