Resumen
Bi-objective search requires computing a Pareto solution set which contains a set of paths. In real-world applications, Pareto solution sets may contain several tens or even hundreds of solutions. For a human user trying to commit to just one of these paths, navigating through a large solution set may become overwhelming, which motivates the problem of computing small, good-quality subsets of Pareto frontiers. This document presents two main contributions. First, we provide a simple formalization of good-quality subsets of a Pareto solution set. For this, we use measure of richness which has been employed in the study of Population Dynamics. Second, we propose Chebyshev BOA*, a variant of BOA* to compute good-quality subset approximations.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 255-256 |
Número de páginas | 2 |
Publicación | The International Symposium on Combinatorial Search |
Volumen | 17 |
N.º | 1 |
DOI | |
Estado | Publicada - 2024 |
Evento | 17th International Symposium on Combinatorial Search, SoCS 2024 - Kananaskis, Canadá Duración: 2024 → 2024 |
Nota bibliográfica
Publisher Copyright:© 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Áreas temáticas de ASJC Scopus
- Redes de ordenadores y comunicaciones