TY - JOUR
T1 - Discovery of BbX transcription factor in the patagonian blennie
T2 - Exploring expression changes following combined bacterial and thermal stress exposure
AU - Martínez, Danixa
AU - Nualart, Daniela
AU - Loncoman, Carlos
AU - Opazo, Juan C.
AU - Zabala, Kattina
AU - Morera, Francisco J.
AU - Mardones, Gonzalo A.
AU - Vargas-Chacoff, Luis
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/12
Y1 - 2023/12
N2 - High-Mobility Group (HMG) proteins are involved in different processes such as transcription, replication, DNA repair, and immune response. The role of HMG proteins in the immune response of fish has been studied mainly for HMGB1, where its expression can be induced by the stimulation of viral/bacterial PAMPs and can act as a proinflammatory mediator and as a global regulator of transcription in response to temperature. However, for BbX this role remains to be discovered. In this work, we identified the BbX of E. maclovinus and evaluated the temporal expression levels after simultaneous challenge with P. salmonis and thermal stress. Phylogenetic analysis does not significantly deviate from the expected organismal relationships suggesting orthologous relationships and that BbX was present in the common ancestor of the group. BbX mRNA expression levels were very high in the intestinal tissue of E. maclovinus (foregut, midgut, and hindgut). Nevertheless, the protein levels analyzed by WB showed the highest levels of BbX protein in the liver (constitutive expression). On the other hand, the mRNA expression levels of BbX in the liver of E. maclovinus injected with P. salmonis and subjected to thermal stress showed an increase at days 16 and 20 in all treatments applied at 12 °C and 18 °C. Meanwhile, the protein levels quantified by WB showed a statistically significant increase in the HMG-Bbx at all experimental times (4, 8, 12, 16, and 20 dpi). However, at 4 dpi the HMG-Bbx protein levels were much higher than the other days evaluated. The results suggest that BbX protein may be implicated in the response mechanism to temperature and bacterial stimulation in the foregut, midgut, hindgut, and liver, according to our findings at the level of mRNA and protein. Furthermore, our WB analysis suggests an effect of P. salmonis on the expression of this protein that can be observed in condition C+ 12 °C compared to C- 12 °C. Then, there is an effect of temperature that can be evidenced in the condition AM 18 °C and SM 18 °C, compared to AB 18 °C and SB 18 °C at 4, 8, and 12 dpi. We found not differences in the levels of this protein if the thermal stress is achieved through acclimatization or shock. More research is necessary to clarify the importance of this type of HMG in the immune response and thermal tolerance in fish.
AB - High-Mobility Group (HMG) proteins are involved in different processes such as transcription, replication, DNA repair, and immune response. The role of HMG proteins in the immune response of fish has been studied mainly for HMGB1, where its expression can be induced by the stimulation of viral/bacterial PAMPs and can act as a proinflammatory mediator and as a global regulator of transcription in response to temperature. However, for BbX this role remains to be discovered. In this work, we identified the BbX of E. maclovinus and evaluated the temporal expression levels after simultaneous challenge with P. salmonis and thermal stress. Phylogenetic analysis does not significantly deviate from the expected organismal relationships suggesting orthologous relationships and that BbX was present in the common ancestor of the group. BbX mRNA expression levels were very high in the intestinal tissue of E. maclovinus (foregut, midgut, and hindgut). Nevertheless, the protein levels analyzed by WB showed the highest levels of BbX protein in the liver (constitutive expression). On the other hand, the mRNA expression levels of BbX in the liver of E. maclovinus injected with P. salmonis and subjected to thermal stress showed an increase at days 16 and 20 in all treatments applied at 12 °C and 18 °C. Meanwhile, the protein levels quantified by WB showed a statistically significant increase in the HMG-Bbx at all experimental times (4, 8, 12, 16, and 20 dpi). However, at 4 dpi the HMG-Bbx protein levels were much higher than the other days evaluated. The results suggest that BbX protein may be implicated in the response mechanism to temperature and bacterial stimulation in the foregut, midgut, hindgut, and liver, according to our findings at the level of mRNA and protein. Furthermore, our WB analysis suggests an effect of P. salmonis on the expression of this protein that can be observed in condition C+ 12 °C compared to C- 12 °C. Then, there is an effect of temperature that can be evidenced in the condition AM 18 °C and SM 18 °C, compared to AB 18 °C and SB 18 °C at 4, 8, and 12 dpi. We found not differences in the levels of this protein if the thermal stress is achieved through acclimatization or shock. More research is necessary to clarify the importance of this type of HMG in the immune response and thermal tolerance in fish.
KW - Eleginops maclovinus
KW - Gene expression
KW - HMG-BbX
KW - Piscirickettsia salmonis
KW - Sub-antarctic notothenioid
UR - http://www.scopus.com/inward/record.url?scp=85171596955&partnerID=8YFLogxK
U2 - 10.1016/j.dci.2023.105056
DO - 10.1016/j.dci.2023.105056
M3 - Article
AN - SCOPUS:85171596955
SN - 0145-305X
VL - 149
JO - Developmental and Comparative Immunology
JF - Developmental and Comparative Immunology
M1 - 105056
ER -