Data-Driven Finite Control-Set Model Predictive Control for Modular Multilevel Converter

Wenjie Wu, Lin Qiu*, Jose Rodriguez, Xing Liu, Jien Ma, Youtong Fang

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

21 Citas (Scopus)

Resumen

This article investigates a data-driven-based predictive current control (DD-PCC) approach for a modular multilevel converter (MMC) to circumvent the sensitiveness to parameter variation and unmodeled dynamics of a finite control-set model predictive control (FCS-MPC) method. By integrating a model-free adaptive control (MFAC)-based data-driven solution into the FCS-MPC framework, the performance deterioration caused by model uncertainties is suppressed. The design of the suggested controller is only based on input-output measurement data, where neither the parameter information nor the knowledge of detailed MMC models is required, leading to improved robustness against parameter drifts and model uncertainness. Moreover, a simplified cost function formula that takes into account output current tracking and circulating current regulation is constructed to efficiently determine the optimal insertion index of each arm. Finally, simulation and experimental results are obtained to verify the steady-state, dynamics, and robustness performance of the proposed approach.

Idioma originalInglés
Páginas (desde-hasta)523-531
Número de páginas9
PublicaciónIEEE Journal of Emerging and Selected Topics in Power Electronics
Volumen11
N.º1
DOI
EstadoPublicada - 2023

Nota bibliográfica

Publisher Copyright:
© 2013 IEEE.

Áreas temáticas de ASJC Scopus

  • Ingeniería energética y tecnologías de la energía
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Data-Driven Finite Control-Set Model Predictive Control for Modular Multilevel Converter'. En conjunto forman una huella única.

Citar esto