Autoregressive Moving Average Model-Free Predictive Current Control for PMSM Drives

Yao Wei, Fengxiang Wang, Hector Young, Dongliang Ke*, Jose Rodriguez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

To eliminate the influence of the parameter mismatches and obtain high model quality, a model-free predictive current control (MF-PCC) strategy based on the autoregressive moving average (ARMA) structure is proposed in this article and applied to the permanent magnet synchronous motor (PMSM) speed control system. Since the ARMA model group, which is a family of mathematical models containing AR, MA, and ARMA structures, considers operating states within several sampling periods to achieve better model accuracy, the plant is online-designed as this type, and its coefficients are estimated according to the sampled data by the normalized least-mean-square (NLMS) algorithm with adaptive normalized step length to achieve improved model quality with reduced calculation burden. Compared with the ultralocal MF-PCC strategy, the advantages of better stator current quality and robustness are demonstrated by the experimental results, as well as the reduced calculation burden compared with the recursive least square (RLS) algorithm used to estimate the coefficients.

Idioma originalInglés
Páginas (desde-hasta)3874-3884
Número de páginas11
PublicaciónIEEE Journal of Emerging and Selected Topics in Power Electronics
Volumen11
N.º4
DOI
EstadoPublicada - 2023

Nota bibliográfica

Publisher Copyright:
© 2013 IEEE.

Áreas temáticas de ASJC Scopus

  • Ingeniería energética y tecnologías de la energía
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Autoregressive Moving Average Model-Free Predictive Current Control for PMSM Drives'. En conjunto forman una huella única.

Citar esto