Resumen
Deriving insight from data is a challenging task for researchers and practitioners, especially when working on spatio-temporal domains. If pattern searching is involved, the complications introduced by temporal data dimensions create additional obstacles, as traditional data mining techniques are insufficient to address spatio-temporal databases (STDBs). We hereby present a new algorithm, which we refer to as F1/FP, and can be described as a probabilistic version of the Minus-F1 algorithm to look for periodic patterns. To the best of our knowledge, no previous work has compared the most cited algorithms in the literature to look for periodic patterns—namely, Apriori, MS-Apriori, FP-Growth, Max-Subpattern, and PPA. Thus, we have carried out such comparisons and then evaluated our algorithm empirically using two datasets, showcasing its ability to handle different types of periodicity and data distributions. By conducting such a comprehensive comparative analysis, we have demonstrated that our newly proposed algorithm has a smaller complexity than the existing alternatives and speeds up the performance regardless of the size of the dataset. We expect our work to contribute greatly to the mining of astronomical data and the permanently growing online streams derived from social media.
Título traducido de la contribución | Un Algoritmo Probabilístico Eficiente para Detectar Patrones Periódicos en Conjuntos de Datos Espacio-Temporales |
---|---|
Idioma original | Inglés |
Número de artículo | 59 |
Páginas (desde-hasta) | 1-19 |
Número de páginas | 19 |
Publicación | Big Data and Cognitive Computing |
Volumen | 8 |
N.º | 6 |
DOI | |
Estado | Publicada - 2024 |
Nota bibliográfica
Publisher Copyright:© 2024 by the authors.
Áreas temáticas de ASJC Scopus
- Sistemas de gestión de la información
- Sistemas de información
- Informática aplicada
- Inteligencia artificial