TY - JOUR
T1 - Acute mental discomfort associated with suicide behavior in a clinical sample of patients with affective disorders
T2 - Ascertaining critical variables using artificial intelligence tools
AU - Morales, Susana
AU - Barros, Jorge
AU - Echávarri, Orietta
AU - García, Fabián
AU - Osses, Alex
AU - Moya, Claudia
AU - Maino, María Paz
AU - Fischman, Ronit
AU - Núñez, Catalina
AU - Szmulewicz, Tita
AU - Tomicic, Alemka
N1 - Publisher Copyright:
© 2017 Morales, Barros, Echávarri, García, Osses, Moya, Maino, Fischman, Núñez, Szmulewicz and Tomicic.
PY - 2017/2/2
Y1 - 2017/2/2
N2 - Aim: In efforts to develop reliable methods to detect the likelihood of impending suicidal behaviors, we have proposed the following. Objective: To gain a deeper understanding of the state of suicide risk by determining the combination of variables that distinguishes between groups with and without suicide risk. Method: A study involving 707 patients consulting for mental health issues in three health centers in Greater Santiago, Chile. Using 345 variables, an analysis was carried out with artificial intelligence tools, Cross Industry Standard Process for Data Mining processes, and decision tree techniques. The basic algorithm was top-down, and the most suitable division produced by the tree was selected by using the lowest Gini index as a criterion and by looping it until the condition of belonging to the group with suicidal behavior was fulfilled. Results: Four trees distinguishing the groups were obtained, of which the elements of one were analyzed in greater detail, since this tree included both clinical and personality variables. This specific tree consists of six nodes without suicide risk and eight nodes with suicide risk (tree decision 01, accuracy 0.674, precision 0.652, recall 0.678, specificity 0.670, F measure 0.665, receiver operating characteristic (ROC) area under the curve (AUC) 73.35%; tree decision 02, accuracy 0.669, precision 0.642, recall 0.694, specificity 0.647, F measure 0.667, ROC AUC 68.91%; tree decision 03, accuracy 0.681, precision 0.675, recall 0.638, specificity 0.721, F measure, 0.656, ROC AUC 65.86%; tree decision 04, accuracy 0.714, precision 0.734, recall 0.628, specificity 0.792, F measure 0.677, ROC AUC 58.85%). Conclusion: This study defines the interactions among a group of variables associated with suicidal ideation and behavior. By using these variables, it may be possible to create a quick and easy-to-use tool. As such, psychotherapeutic interventions could be designed to mitigate the impact of these variables on the emotional state of individuals, thereby reducing eventual risk of suicide. Such interventions may reinforce psychological well-being, feelings of self-worth, and reasons for living, for each individual in certain groups of patients.
AB - Aim: In efforts to develop reliable methods to detect the likelihood of impending suicidal behaviors, we have proposed the following. Objective: To gain a deeper understanding of the state of suicide risk by determining the combination of variables that distinguishes between groups with and without suicide risk. Method: A study involving 707 patients consulting for mental health issues in three health centers in Greater Santiago, Chile. Using 345 variables, an analysis was carried out with artificial intelligence tools, Cross Industry Standard Process for Data Mining processes, and decision tree techniques. The basic algorithm was top-down, and the most suitable division produced by the tree was selected by using the lowest Gini index as a criterion and by looping it until the condition of belonging to the group with suicidal behavior was fulfilled. Results: Four trees distinguishing the groups were obtained, of which the elements of one were analyzed in greater detail, since this tree included both clinical and personality variables. This specific tree consists of six nodes without suicide risk and eight nodes with suicide risk (tree decision 01, accuracy 0.674, precision 0.652, recall 0.678, specificity 0.670, F measure 0.665, receiver operating characteristic (ROC) area under the curve (AUC) 73.35%; tree decision 02, accuracy 0.669, precision 0.642, recall 0.694, specificity 0.647, F measure 0.667, ROC AUC 68.91%; tree decision 03, accuracy 0.681, precision 0.675, recall 0.638, specificity 0.721, F measure, 0.656, ROC AUC 65.86%; tree decision 04, accuracy 0.714, precision 0.734, recall 0.628, specificity 0.792, F measure 0.677, ROC AUC 58.85%). Conclusion: This study defines the interactions among a group of variables associated with suicidal ideation and behavior. By using these variables, it may be possible to create a quick and easy-to-use tool. As such, psychotherapeutic interventions could be designed to mitigate the impact of these variables on the emotional state of individuals, thereby reducing eventual risk of suicide. Such interventions may reinforce psychological well-being, feelings of self-worth, and reasons for living, for each individual in certain groups of patients.
KW - Affective disorders
KW - Artificial intelligence
KW - Protective factors
KW - Risk factors
KW - Suicide
UR - http://www.scopus.com/inward/record.url?scp=85014160296&partnerID=8YFLogxK
U2 - 10.3389/fpsyt.2017.00007
DO - 10.3389/fpsyt.2017.00007
M3 - Article
AN - SCOPUS:85014160296
SN - 1664-0640
VL - 8
JO - Frontiers in Psychiatry
JF - Frontiers in Psychiatry
IS - FEB
M1 - 7
ER -