A subject-independent pattern-based brain-computer interface

Andreas M. Ray, Ranganatha Sitaram*, Mohit Rana, Emanuele Pasqualotto, Korhan Buyukturkoglu, Cuntai Guan, Kai Keng Ang, Cristián Tejos, Francisco Zamorano, Francisco Aboitiz, Niels Birbaumer, Sergio Ruiz

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

42 Citas (Scopus)

Resumen

While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.

Idioma originalInglés
Número de artículo269
PublicaciónFrontiers in Behavioral Neuroscience
Volumen9
N.ºOCTOBER
DOI
EstadoPublicada - 2015
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2015 Ray, Sitaram, Rana, Pasqualotto, Buyukturkoglu, Guan, Ang, Tejos, Zamorano, Aboitiz, BirbaumerandRuiz.

Áreas temáticas de ASJC Scopus

  • Neuropsicología y psicología fisiológica
  • Neurociencia cognitiva
  • Psicobiología

Huella

Profundice en los temas de investigación de 'A subject-independent pattern-based brain-computer interface'. En conjunto forman una huella única.

Citar esto