Abstract
Gaultheria pumila (Ericaceae) (known as Chaura or Mutilla) is a Chilean native small shrub that produces berry fruits consumed by local Mapuche people. In this study, the chemical fingerprinting and antioxidant, enzyme inhibition, and antiproliferative activities of the berries were investigated for the first time. Thirty-six metabolites were identified in the fruits by ultra-high performance liquid chromatography-photodiode array detection, hyphenated with Orbitrap mass spectrometry analysis (UHPLC-DAD-Orbitrap-MS). Metabolites, included anthocyanins, phenolic acids, flavonoids, iridoids, diterpenes, and fatty acids. Moderate inhibitory activities against acetylcholinesterase (7.7 ± 0.3 µg/mL), butyrylcholinesterase (34.5 ± 0.5 µg/mL), and tyrosinase (3.3 ± 0.2 µg/mL) enzymes were found. Moreover, selected major compounds were subjected to docking assays in light of their experimental inhibition. Results indicated that hydrogen bonding, π–π interaction, and a salt bridge interaction contributed significantly. Gaultheria pumila berries showed a total phenolic content of 189.2 ± 0.2 mg of gallic acid equivalents/g, total flavonoid content of 51.8 ± 0.1 mg quercetin equivalents/g, and total anthocyanin content of 47.3 ± 0.2 mg of cianydin-3-glucoside equivalents/g. Antioxidant activity was assessed using DPPH (92.8 ± 0.1 µg/mL), FRAP (134.1 ± 0.1 µmol Trolox equivalents/g), and ORAC (4251.6 ± 16.9 µmol Trolox equivalents/g) assays. Conversely, Gaultheria pumila showed a scarce antiproliferative potential against several solid human cancer cells. Our findings suggest that Gaultheria pumila berries have several bioactive metabolites with inhibitory effects against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, and have the potential for use in food supplements.
Original language | English |
---|---|
Article number | 523 |
Journal | Metabolites |
Volume | 11 |
Issue number | 8 |
DOIs | |
State | Published - 2021 |
Bibliographical note
Funding Information:Funding: C.F.-G. acknowledges Postdoctorado FONDECYT 3190794. This research received funds from Universidad San Sebastián (Project VRIDFAI20/11 to L.Q.-R.). MS acknowledges FONDECYT 1180059. A.P. and J.M.P. give thanks to the Spanish Government for the financial support through project PGC2018-094503-B-C22 (MCIU/AEI/FEDER, UE). A.P. thanks the EU Social Fund (FSE) and the Canary Islands ACIISI for the predoctoral grant TESIS2020010055.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Biochemistry
- Molecular Biology