Transactivation activity and nucleocytoplasmic transport of β-catenin are independently regulated by its C-terminal end

J. L. Maturana, I. Niechi, E. Silva, H. Huerta, R. Cataldo, S. Härtel, L. F. Barros, M. Galindo, J. C. Tapia*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The key protein in the canonical Wnt pathway is β-catenin, which is phosphorylated both in absence and presence of Wnt signals by different kinases. Upon activation in the cytoplasm, β-catenin can enter into the nucleus to transactivate target gene expression, many of which are cancer-related genes. The mechanism governing β-catenin's nucleocytoplasmic transport has been recently unvealed, although phosphorylation at its C-terminal end and its functional consequences are not completely understood. Serine 646 of β-catenin is a putative CK2 phosphorylation site and lies in a region which has been proposed to be important for its nucleocytoplasmic transport and transactivation activity. This residue was mutated to aspartic acid mimicking CK2-phosphorylation and its effects on β-catenin activity as well as localization were explored. β-Catenin S6464D did not show significant differences in both transcriptional activity and nuclear localization compared to the wild-type form, but displayed a characteristic granular nuclear pattern. Three-dimensional models of nuclei were constructed which showed differences in number and volume of granules, being those from β-catenin S646D more and smaller than the wild-type form. FRAP microscopy was used to compare nuclear export of both proteins which showed a slightly higher but not significant retention of β-catenin S646D. Altogether, these results show that C-terminal phosphorylation of β-catenin seems to be related with its nucleocytoplasmic transport but not transactivation activity.

Original languageEnglish
Article number40812
Pages (from-to)115-122
Number of pages8
JournalGene
Volume573
Issue number1
DOIs
StatePublished - 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 Elsevier B.V.

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'Transactivation activity and nucleocytoplasmic transport of β-catenin are independently regulated by its C-terminal end'. Together they form a unique fingerprint.

Cite this