Abstract
AU Humans: Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly often face the challenge of making decisions between : ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.
Original language | English |
---|---|
Article number | e3002452 |
Journal | PLoS Biology |
Volume | 22 |
Issue number | 1 |
DOIs | |
State | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2024 Public Library of Science. All rights reserved.
ASJC Scopus subject areas
- General Neuroscience
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences