Abstract
Hydrogel silver nanocomposites are found to be excellent materials for antibacterial applications. To enhance their applicability novel hydrogel-silver nanoparticle-curcumin composites have been developed. For developing, these composites, the hydrogel matrices are synthesized first by polymerizing acrylamide in the presence of poly(vinyl sulfonic acid sodium salt) and a trifunctional crosslinker (2,4,6-triallyloxy 1,3,5-triazine, TA) using redox initiating system (ammonium persulphate/TMEDA). Silver nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating the silver ions and subsequent reduction with sodium borohydride. Curcumin loading into hydrogel-silver nanoparticles composite is achieved by diffusion mechanism. A series of hydrogel-silver nanoparticle-curcumin composites are developed and are characterized by using Fourier transform infrared (FTIR) and UV-visible (UV-vis) spectroscopy, X-ray diffraction, thermal analyses, as well as scanning and transmission electron microscopic (SEM/TEM) methods. An interesting arrangement of silver nanoparticles i.e., a shining sun shape (ball) (∼5 nm) with apparent smaller grown nanoparticles (∼1 nm) is observed by TEM. The curcumin loading and release characteristics are performed for various hydrogel composite systems. A comparative antimicrobial study is performed for hydrogel-silver nanocomposites and hydrogel-silver nanoparticle-curcumin composites.
Original language | English |
---|---|
Pages (from-to) | 784-796 |
Number of pages | 13 |
Journal | Journal of Applied Polymer Science |
Volume | 121 |
Issue number | 2 |
DOIs | |
State | Published - 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Surfaces, Coatings and Films
- Polymers and Plastics
- Materials Chemistry