TY - JOUR
T1 - Sorting Competition with Membrane-permeable Peptides in Intact Epithelial Cells Revealed Discrimination of Transmembrane Proteins Not only at the trans-Golgi Network but Also at Pre-Golgi Stages
AU - Soza, Andrea
AU - Norambuena, Andrés
AU - Cancino, Jorge
AU - De La Fuente, Erwin
AU - Henklein, Peter
AU - González, Alfonso
PY - 2004/4/23
Y1 - 2004/4/23
N2 - Transmembrane proteins destined to the basolateral cell surface of epithelial cells contain in their cytosolic domain at least two classes of sorting signals: one class promotes exit from the endoplasmic reticulum (ER) and transport to the Golgi complex, and the other class operates at the trans-Golgi network (TGN) specifying segregation into basolateral exocytic pathways. Both kinds of addressing motifs are quite diverse among different protein. It is unclear to what extent this feature reflects alternative decoding mechanisms or variations in motifs recognized by the same sorting factor. Here we applied a novel strategy based on permeable peptide technology and temperature-sensitive model proteins to study competition between cytosolic sorting motifs in the context of mammalian living cells. We used the transduction domain of HIV-1 Tat protein to make a membrane-permeable peptide of the cytosolic tail of GtsO45, which contains a well characterized ER exit di-acidic (DIE) motif and a tyrosine-based basolateral sorting signal (YTDI). This peptide added to the media inhibited transport of GtsO45 from both ER-to-Golgi and TGN-to-basolateral cell surface in transfected Madin-Darby canine kidney cells. Instead, it did not affect the exocytic trafficking of a GtsO45-derived chimeric protein bearing 30 juxtamembrane residues from the cytosolic domain of the epidermal growth factor receptor that contains a variant ER exit motif (ERE) and an unconventional proline-based basolateral sorting signal. These results not only proved the feasibility of competing for sorting events in intact cells but also showed that distinct plasma membrane proteins can be discriminated at pre-TGN stages, and that basolateral sorting involves different recognition elements for tyrosine-based motifs and an unconventional basolateral motif.
AB - Transmembrane proteins destined to the basolateral cell surface of epithelial cells contain in their cytosolic domain at least two classes of sorting signals: one class promotes exit from the endoplasmic reticulum (ER) and transport to the Golgi complex, and the other class operates at the trans-Golgi network (TGN) specifying segregation into basolateral exocytic pathways. Both kinds of addressing motifs are quite diverse among different protein. It is unclear to what extent this feature reflects alternative decoding mechanisms or variations in motifs recognized by the same sorting factor. Here we applied a novel strategy based on permeable peptide technology and temperature-sensitive model proteins to study competition between cytosolic sorting motifs in the context of mammalian living cells. We used the transduction domain of HIV-1 Tat protein to make a membrane-permeable peptide of the cytosolic tail of GtsO45, which contains a well characterized ER exit di-acidic (DIE) motif and a tyrosine-based basolateral sorting signal (YTDI). This peptide added to the media inhibited transport of GtsO45 from both ER-to-Golgi and TGN-to-basolateral cell surface in transfected Madin-Darby canine kidney cells. Instead, it did not affect the exocytic trafficking of a GtsO45-derived chimeric protein bearing 30 juxtamembrane residues from the cytosolic domain of the epidermal growth factor receptor that contains a variant ER exit motif (ERE) and an unconventional proline-based basolateral sorting signal. These results not only proved the feasibility of competing for sorting events in intact cells but also showed that distinct plasma membrane proteins can be discriminated at pre-TGN stages, and that basolateral sorting involves different recognition elements for tyrosine-based motifs and an unconventional basolateral motif.
UR - http://www.scopus.com/inward/record.url?scp=2342440111&partnerID=8YFLogxK
U2 - 10.1074/jbc.M313197200
DO - 10.1074/jbc.M313197200
M3 - Article
C2 - 14764609
AN - SCOPUS:2342440111
SN - 0021-9258
VL - 279
SP - 17376
EP - 17383
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -