Model Predictive Control for DFIG to Improve the LVRT Capability under Severe Asymmetrical Grid Faults

Jiateng Gu, Zhenbin Zhang*, Zhen Li, Jose Rodriguez

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Low-voltage ride-through (LVRT) capability of the doubly fed induction generator (DFIG) is seen as insufficient under severe grid faults due to it being prone to suffering from overcurrent. Especially in the asymmetrical grid faults, large oscillations of electromagnetic torque and output power of DFIG will also be caused. To suppress electromagnetic torque oscillation and improve DFIG system LVRT capability, the rotor current reference value should be set to follow the stator flux under severe asymmetrical grid faults. However, the stator flux contains AC components in the synchronous reference frame under asymmetrical grid faults. The classical proportional-integral controller cannot accurately track AC references. To solve this problem, a model predictive control (MPC) method for the DFIG rotor-side converter in the stationary reference frame was proposed in this paper. With this proposal, the tracking accuracy of the rotor current reference value has been considerably improved under asymmetrical grid faults. Thus, the electronic torque oscillation has been reduced to a large extent, and the DFIG system LVRT capability was improved. Finally, simulations verified the effectiveness of the proposed method.

Original languageEnglish
Title of host publication2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350396867
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023 - Wuhan, China
Duration: 20232023

Publication series

Name2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023

Conference

Conference2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2023
Country/TerritoryChina
CityWuhan
Period16/06/2319/06/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

ASJC Scopus subject areas

  • Control and Optimization
  • Modeling and Simulation
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Model Predictive Control for DFIG to Improve the LVRT Capability under Severe Asymmetrical Grid Faults'. Together they form a unique fingerprint.

Cite this