Abstract
Here, energy harvesting nanocomposite films (MOPCFs) were developed from disposable scrap tire rubber (STR) and poly-ε-caprolactone (PCL) via simple solvent evaporation and hot compression molding methods. The metal-oxide impregnated polymeric nanocomposite films (MOPCFs) were derived by the inclusion of ZnO, CuO, CuO0.5-ZnO nanoparticles. The properties of the MOPCFs obtained were studied by FTIR, XRD, TGA/DSC and SEM techniques. The dielectric properties of the MOPCF were tested by using impedance analyzer. The dielectric properties suggested that the STR/PCL/ZnO film has significant dielectric constant (ɛ′, energy storage) and dielectric loss (ɛ″, energy loss) capacities when compared to other films. Ferroelectric/memory storage capacity of the nanocomposites were measured by polarization as a function of electric field, which explained the fact STR/PCL/ZnO has 88.710 V coercive field and a 0.1664 μC/cm2 remanence polarization, indicates efficient ferroelectric capacity at room temperature. These results suggest that STR/PCL/ZnO nanocomposite will be useful for electric energy applications as capacitors and advanced energy harvesters.
Original language | English |
---|---|
Pages (from-to) | 888-895 |
Number of pages | 8 |
Journal | Journal of Cleaner Production |
Volume | 161 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Elsevier Ltd
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Environmental Science
- Strategy and Management
- Industrial and Manufacturing Engineering