TY - JOUR
T1 - Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19
T2 - a multicentre cohort study
AU - REIPI-SEIMC COVID-19 group and COVID@HULP groups
AU - Gutiérrez-Gutiérrez, Belén
AU - del Toro, María Dolores
AU - Borobia, Alberto M.
AU - Carcas, Antonio
AU - Jarrín, Inmaculada
AU - Yllescas, María
AU - Ryan, Pablo
AU - Pachón, Jerónimo
AU - Carratalà, Jordi
AU - Berenguer, Juan
AU - Arribas, Jose Ramón
AU - Rodríguez-Baño, Jesús
AU - Aznar Muñoz, Esther
AU - Gil Divasson, Pedro
AU - González Muñiz, Patricia
AU - Muñoz Aguirre, Clara
AU - Retamar, Pilar
AU - Valiente, Adoración
AU - López-Cortés, Luis E.
AU - Sojo-Dorado, Jesús
AU - Bravo-Ferrer, José
AU - Salamanca, Elena
AU - Palacios-Baena, Zaira R.
AU - Pérez-Palacios, Patricia
AU - Gandullo-Moro, María
AU - Ruíz-Hueso, Rocío
AU - Moya-González, Natalia
AU - Valido-Morales, Agustín
AU - Pavón-Masa, María
AU - Díaz Menéndez, Marta
AU - De la Calle Prieto, Fernando
AU - Arsuaga Vicente, Marta
AU - Trigo Esteban, Elena
AU - De Miguel Buckley, Rosa
AU - Cadiñanos Loidi, Julen
AU - Busca Arenzana, Carmen
AU - Mican Rivera, Rafael
AU - Mora Rillo, Marta
AU - Loeches Yagüe, Belén
AU - Bernardino de la Serna, José Ignacio
AU - García Rodríguez, Julio
AU - Montejano Sánchez, Rocío
AU - Diaz Pollan, Beatriz
AU - López, Juan Carlos
AU - Ramírez-Schacke, Margarita
AU - Gutiérrez, Isabel
AU - Tejerina, Francisco
AU - Aldámiz-Echevarría, Teresa
AU - Díez, Cristina
AU - Rodríguez-Álvarez, Diego
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/6
Y1 - 2021/6
N2 - Background: The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality. Methods: In this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model. Findings: Three distinct phenotypes were derived in the derivation cohort (n=2667)—phenotype A (516 [19%] patients), phenotype B (1955 [73%]) and phenotype C (196 [7%])—and reproduced in the internal validation cohort (n=1368)—phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2·5% (95% CI 1·4–4·3) for patients with phenotype A, 30·5% (28·5–32·6) for patients with phenotype B, and 60·7% (53·7–67·2) for patients with phenotype C (log-rank test p<0·0001). The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5·3% [95% CI 3·4–8·1] for phenotype A, 31·3% [28·5–34·2] for phenotype B, and 59·5% [48·8–69·3] for phenotype C; external validation cohort: 3·7% [2·0–6·4] for phenotype A, 23·7% [21·8–25·7] for phenotype B, and 51·4% [41·9–60·7] for phenotype C). Interpretation: Patients admitted to hospital with COVID-19 can be classified into three phenotypes that correlate with mortality. We developed and validated a simplified tool for the probabilistic assignment of patients into phenotypes. These results might help to better classify patients for clinical management, but the pathophysiological mechanisms of the phenotypes must be investigated. Funding: Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation, and Fundación SEIMC/GeSIDA.
AB - Background: The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality. Methods: In this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model. Findings: Three distinct phenotypes were derived in the derivation cohort (n=2667)—phenotype A (516 [19%] patients), phenotype B (1955 [73%]) and phenotype C (196 [7%])—and reproduced in the internal validation cohort (n=1368)—phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2·5% (95% CI 1·4–4·3) for patients with phenotype A, 30·5% (28·5–32·6) for patients with phenotype B, and 60·7% (53·7–67·2) for patients with phenotype C (log-rank test p<0·0001). The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5·3% [95% CI 3·4–8·1] for phenotype A, 31·3% [28·5–34·2] for phenotype B, and 59·5% [48·8–69·3] for phenotype C; external validation cohort: 3·7% [2·0–6·4] for phenotype A, 23·7% [21·8–25·7] for phenotype B, and 51·4% [41·9–60·7] for phenotype C). Interpretation: Patients admitted to hospital with COVID-19 can be classified into three phenotypes that correlate with mortality. We developed and validated a simplified tool for the probabilistic assignment of patients into phenotypes. These results might help to better classify patients for clinical management, but the pathophysiological mechanisms of the phenotypes must be investigated. Funding: Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation, and Fundación SEIMC/GeSIDA.
UR - http://www.scopus.com/inward/record.url?scp=85103248162&partnerID=8YFLogxK
U2 - 10.1016/S1473-3099(21)00019-0
DO - 10.1016/S1473-3099(21)00019-0
M3 - Article
C2 - 33636145
AN - SCOPUS:85103248162
SN - 1473-3099
VL - 21
SP - 783
EP - 792
JO - The Lancet Infectious Diseases
JF - The Lancet Infectious Diseases
IS - 6
ER -