High total cholesterol and triglycerides levels increase arginases metabolism, impairing nitric oxide signaling and worsening fetoplacental endothelial dysfunction in gestational diabetes mellitus pregnancies

S. Contreras-Duarte*, C. Cantin, M. Farias, A. Leiva

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Maternal physiological dyslipidemia (MPD) supports fetal development in human pregnancy. However, some women develop maternal supraphysiological dyslipidemia (MSPD: increased total cholesterol (TC) and triglycerides (TG) levels). MSPH is present in normal and also in gestational diabetes mellitus (GDM) pregnancies. MSPD and GDM associate with fetoplacental endothelial dysfunction, producing alterations in nitric oxide (NO)-L-arginine/arginase metabolism. Nevertheless, the effect of MSPD on GDM, and how this synergy alters fetoplacental endothelial function is unknown. Therefore, the aim of this study was to evaluate in human umbilical vein endothelial cells, the effects of MSPD in GDM and how these pathologies together affect the fetoplacental endothelial function. 123 women at term of pregnancy were classified as MPD (n = 40), MSPD (n = 35), GDM with normal lipids (GDM-MPD, n = 23) and with increased lipids (GDM-MSPD, n = 25). TC ≥291 mg/dL and TG ≥275 mg/dL were considered as MSPD. Endothelial NO synthase (eNOS), human cationic amino acid transporter 1 (hCat1), and arginase II protein abundance and activity, were assayed in umbilical vein endothelial cells. In MSPD and GDM-MSPD, TC and TG increased respect to MPD and GDM-MPD. eNOS activity was reduced in MSPD and GDM-MSPD, but increased in GDM-MPD compared with MPD. However, decreased tetrahydrobiopterin levels were observed in all groups compared with MPD. Increased hCat1 protein and L-arginine transport were observed in both GDM groups compared with MPD. However, the transport was higher in GDM-MSPD compared to GDM-MPD. Higher Arginase II protein and activity were observed in GDM-MSPD compared with MPD. Thus, MSPD in GDM pregnancies alters fetal endothelial function associated with NO metabolism.

Original languageEnglish
Article number166216
JournalBiochimica et Biophysica Acta - Molecular Basis of Disease
Volume1867
Issue number12
DOIs
StatePublished - 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology

Fingerprint

Dive into the research topics of 'High total cholesterol and triglycerides levels increase arginases metabolism, impairing nitric oxide signaling and worsening fetoplacental endothelial dysfunction in gestational diabetes mellitus pregnancies'. Together they form a unique fingerprint.

Cite this