Dry two-step self-assembly of stable supported lipid bilayers on silicon substrates

Marcelo A. Cisternas, Francisca Palacios-Coddou, Sebastian Molina, Maria Jose Retamal, Nancy Gomez-Vierling, Nicolas Moraga, Hugo Zelada, Marco A. Soto-Arriaza, Tomas P. Corrales, Ulrich G. Volkmann*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single-and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.

Original languageEnglish
Article number6819
Pages (from-to)1-15
Number of pages15
JournalInternational Journal of Molecular Sciences
Volume21
Issue number18
DOIs
StatePublished - 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Dry two-step self-assembly of stable supported lipid bilayers on silicon substrates'. Together they form a unique fingerprint.

Cite this