TY - JOUR
T1 - Dry two-step self-assembly of stable supported lipid bilayers on silicon substrates
AU - Cisternas, Marcelo A.
AU - Palacios-Coddou, Francisca
AU - Molina, Sebastian
AU - Retamal, Maria Jose
AU - Gomez-Vierling, Nancy
AU - Moraga, Nicolas
AU - Zelada, Hugo
AU - Soto-Arriaza, Marco A.
AU - Corrales, Tomas P.
AU - Volkmann, Ulrich G.
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9/2
Y1 - 2020/9/2
N2 - Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single-and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.
AB - Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single-and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.
KW - Artificial membranes
KW - Atomic force microscopy
KW - Bio-silica interfaces
KW - Force spectroscopy
KW - High resolution ellipsometry
KW - Phase transitions
KW - Physical vapor deposition
KW - Self-assembly
KW - Supported lipid bilayers
UR - http://www.scopus.com/inward/record.url?scp=85091255301&partnerID=8YFLogxK
U2 - 10.3390/ijms21186819
DO - 10.3390/ijms21186819
M3 - Article
C2 - 32957654
AN - SCOPUS:85091255301
SN - 1661-6596
VL - 21
SP - 1
EP - 15
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 18
M1 - 6819
ER -