Abstract
Metastatic melanoma is a fatal disease that responds poorly to classical treatments but can be targeted by T cell-based immunotherapy. Cancer vaccines have the potential to generate long-lasting cytotoxic CD8+ T cell responses able to eradicate established and disseminated tumors. Vaccination against antigens expressed by tumor cells with enhanced metastatic potential represents a highly attractive strategy to efficiently target deadly metastatic disease. Cripto-1 is frequently over-expressed in human carcinomas and melanomas, but is expressed only at low levels on normal differentiated tissues. Cripto-1 is particularly upregulated in cancer-initiating cells and is involved in cellular processes such as cell migration, invasion and epithelial–mesenchymal transition, which are hallmarks of aggressive cancer cells able to initiate metastatic disease. Here, we explored the potential of Cripto-1 vaccination to target metastatic melanoma in a preclinical model. Cripto-1 was overexpressed in highly metastatic B16F10 cells as compared to poorly metastatic B16F1 cells. Moreover, B16F10 cells grown in sphere conditions to enrich for cancer stem cells (CSC) progressively upregulated cripto1 expression. Vaccination of C57Bl/6 mice with a DNA vaccine encoding mouse Cripto-1 elicited a readily detectable/strong cytotoxic CD8+ T cell response specific for a H-2 Kb-restricted epitope identified based on its ability to bind H-2b molecules. Remarkably, Cripto-1 vaccination elicited a protective response against lung metastasis and subcutaneous challenges with highly metastatic B16F10 melanoma cells. Our data indicate that vaccination against Cripto-1 represents a novel strategy to be tested in the clinic.
Original language | English |
---|---|
Article number | e1128613 |
Journal | OncoImmunology |
Volume | 5 |
Issue number | 5 |
DOIs | |
State | Published - 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© M. A. Ligtenberg, K. Witt, F. Galvez-Cancino, A. Sette, A. Lundqvist, A. Lladser, and R. Kiessling.
ASJC Scopus subject areas
- Immunology and Allergy
- Immunology
- Oncology