Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring

Cristhian A. Aguilera*, Carola Figueroa-Flores, Cristhian Aguilera, Cesar Navarrete

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In blueberry farming, accurately assessing maturity is critical to efficient harvesting. Deep Learning solutions, which are increasingly popular in this area, often undergo evaluation through metrics like mean average precision (mAP). However, these metrics may only partially capture the actual performance of the models, especially in settings with limited resources like those in agricultural drones or robots. To address this, our study evaluates Deep Learning models, such as YOLOv7, RT-DETR, and Mask-RCNN, for detecting and classifying blueberries. We perform these evaluations on both powerful computers and embedded systems. Using Type-Influence Detector Error (TIDE) analysis, we closely examine the accuracy of these models. Our research reveals that partial occlusions commonly cause errors, and optimizing these models for embedded devices can increase their speed without losing precision. This work improves the understanding of object detection models for blueberry detection and maturity estimation.

Original languageEnglish
Article number18
JournalAgriculture (Switzerland)
Volume14
Issue number1
DOIs
StatePublished - 2024

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

ASJC Scopus subject areas

  • Food Science
  • Agronomy and Crop Science
  • Plant Science

Fingerprint

Dive into the research topics of 'Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring'. Together they form a unique fingerprint.

Cite this