Common DC-Link Multilevel Converters: Topologies, Control and Industrial Applications

Ibrahim Harbi*, Jose Rodriguez, Amirreza Poorfakhraei, Hani Vahedi, Miguel Guse, Mohamed Trabelsi, Mohamed Abdelrahem, Mostafa Ahmed, Mohammad Fahad, Chang Hua Lin, Thiwanka Wijekoon, Wei Tian, Marcelo Lobo Heldwein, Ralph Kennel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Multilevel converters (MLCs) are widely recognized for their exceptional benefits and have emerged as the preferred choice for medium- and high-power/voltage applications. Their usage has also been extended to low-power applications to overcome issues associated with high switching frequencies and electromagnetic interference (EMI) commonly encountered in two-level converters. Common dc-link MLCs have received particular attention in industry due to their ability to eliminate the need for bulky and inefficient transformers and rectifiers, making them a compelling option for different applications, primarily medium- and high-power/voltage applications such as wind turbine (WT) power conversion systems. Furthermore, common dc-link topologies are required for back-to-back (BTB) configurations, as they facilitate the use of a shared dc-link between the rectification and inversion stages. Despite their popularity, there is currently no comprehensive review article dedicated to common dc-link topologies. This article addresses this gap by presenting a comprehensive review of common dc-link MLCs, covering their topological evolution, features, topologies comparison, modulation techniques, control strategies, and industrial application areas. Additionally, future perspectives and recommendations are discussed to provide researchers and engineers with a better understanding of the potential applications and advantages of these converters.

Original languageEnglish
Pages (from-to)512-538
Number of pages27
JournalIEEE Open Journal of Power Electronics
Volume4
DOIs
StatePublished - 2023

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Common DC-Link Multilevel Converters: Topologies, Control and Industrial Applications'. Together they form a unique fingerprint.

Cite this