TY - CHAP

T1 - A*pex: Efficient Approximate Multi-Objective Search on Graphs

AU - Zhang, Han

AU - Salzman, Oren

AU - Kumar, T. K.Satish

AU - Felner, Ariel

AU - Ulloa, Carlos Hernández

AU - Koenig, Sven

PY - 2022

Y1 - 2022

N2 - In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is “less than” the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PP-A*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PP-A* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any number of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search.

AB - In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is “less than” the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PP-A*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PP-A* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any number of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search.

UR - https://www.mendeley.com/catalogue/64c31a1d-0266-33bf-aa20-4df75289ab12/

U2 - 10.1609/icaps.v32i1.19825

DO - 10.1609/icaps.v32i1.19825

M3 - Capítulo

SN - 9781577358749

T3 - Proceedings International Conference on Automated Planning and Scheduling, ICAPS

SP - 394

EP - 403

BT - Proceedings International Conference on Automated Planning and Scheduling, ICAPS

ER -